ON ELEMENTS WITH INDEX DIVISIBLE BY FIXED PRIMES IN A PARAMETRIC FAMILY OF BICYCLIC BIQUADRATIC FIELDS

Borka Jadrijević
University of Split (Split, Croatia)

Abstract

In this talk we will present some results about primitive integral elements \(\alpha \) in the family of bicyclic biquadratic fields
\[L_c = \mathbb{Q} \left(\sqrt{(c-2)c}, \sqrt{(c+4)c} \right) \] which have index \(\mu(\alpha) \) divisible by fixed primes and coprime coordinates in given integral bases. Precisely, we show that if \(c \geq 11 \) and \(\alpha \) is an element with index \(\mu(\alpha) = 2^a 3^b \leq c + 1 \), then \(\alpha \) is an element with minimal index \(\mu(\alpha) = \mu(L_c) = 12 \). We also show that for every integer \(C_0 \geq 3 \) we can find effectively computable constants \(M_0(C_0) \) and \(N_0(C_0) \) such that if \(c \leq C_0 \), then there are no elements \(\alpha \) with index of the form \(\mu(\alpha) = 2^a 3^b \), where \(a > M(C_0) \) or \(b > N(C_0) \).